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Granularity in Multi-Method Planning*

Soowon Lee and Paul S. Rosenbloom
Information Sciences Institute and Computer Science Department

University of Southern California
4676 Admiralty Way

Marina del Rey, CA 90292
{swlee,rosenbloom } @isi.edu

(To appear in Proceedings of the Eleventh National Conference on Al, 1993.)

Abstract goal-flexibility. The goal-protection dimension deter-
mines whether or not a protection bias is used, that

Multi-method planning is an approach to using eliminates plans in which an operator undoes an ini-
S a set of different planning methods to simultane- tial goal conjunct that is either true a priori or es-
ously achieve planner completeness, planning time tablished by an earlier operator in the sequence. The
efficiency, and plan length reduction. Although it goal-flexibility dimension determines the degree of flex-
has been shown that coordinating a set of meth- ibility the planner has in using new subgoals. Two
ods in a coarse-grained, problem-by-problem man- biases, directness and linearity, are used along this di-
ner has the potential for approaching this ideal, mension. Directness eliminates plans in which opera-
such an approach can waste a significant amount tors are used to achieve preconditions of other oper-
of time in trying methods that ultimately prove in- _tors, rather than just top-level goal conjuncts. Lin-
adequate. This paper investigates an approach to earity eliminates plans in which operators for different
reducing this wasted effort by refining the gran- goal conjuncts are interleaved. The 3x2 methods arise
ularity at which methods are switched. The ex- from the cross-product of these two dimensions: (di-
perimental results show that the fine-grained ap- rectness, linearity, or nonlinearity) x (protection, or
proach can improve the planning time significantly no-protection).2

* ~~compared with coarse-grained and single-method n-rtcin.c papprohes. wThese single-method planners are implemented inapproaches. the context of the Soar architecture (Laird, Newell, &
Rosenbloom, 198"). Plans in Soar are represented as

Introduction sets of control rules that jointly specify which operators
The ability to find a low execution-cost plan efficiently should be executed at each point in time (Rosenbloom,
over a wide domain of applicability is the core of Lee, & Unruh, 1990). Planning time for these methods
domain-independent planning systems. The key issue is measured in terms of decisions, the basic behavioral
here is how to construct a single planning method, or cycle in Soar. This measure is not quite identical to
how to coordinate a set of different planning methods, the more traditional measure of number of planning
that has sufficient scope and efficiency. Our approach operators executed, but should still correlate with it
to this issue begins with the observation that no sin- relatively closely.
gle method will satisfy both sufficiency and efficiency, The six implemented methods have previously been
with the implication therefore that a coordinated set compared empirically in terms of planner complete-
of planning methods will be needed. ness, planning time, and plan length over a test set

We have constructed a system that can utilize six dif- of 100 randomly generated 3- and 4-conjunct problems
ferent planning methods, based on the notion of bias in the blocks-world domain. The predominant result
in planning. A planning bias is any constraint over the obtained so far from the experiments with these meth-
space of plans considered that determines which por- ods is that planning time and plan length are both
tion of the entire plan space can be the output of the inversely correlated with the applicability of the plan-
planning.' The six planning methods used vary along
two independent bias dimensions: goal-protection and does not rule out a search strategy that incrementally spec-

ifies an element of the plan space by refining a partially-
"This work was sponsored by the Defense Advanced Re- ordered plan structure.

search Projects Agency (DOD) and the Office of Naval Re- 2The term "nonlinearity" in this context implies that it L0
search under contract number N00014-89-K-0155. is allowable to interleave operators in service of different

'The specification here assumes that the plan space con- goal conjuncts. It does not necessarily mean that either
tains only totally-ordered sequences of operators, but it partial-order or least-commitment planning are being used.
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ning method; that is, the more restricted the method, one step in this direction, in which we investigate re-
the less time it takes to solve the problems that it can ducing the wasted effort in multi-method planners by
solve, and the shorter are the plans generated. The refining the granularity at which the individual plan-
most restricted method (the method with directness ning methods can be switched. This approach has been
and protection) could solve 68 of them. in an aver- implemented, and initial experiments in two domains
age of 16.3 decisions each, producing plans contain- show significant gains in planning time with respect
ing an average of 1.8 operators (Lee & Rosenbloom, to both single-method and the earlier, coarser-grained.
1992). The least restricted method (nonlincar planning multi-method planners.
without goal protection) could solve all 100 problems;
however, planning time and plan length averaged over Fine-grained Multi-method Planners
the same 68 problems solvable by the most restricted
method were considerably worse - an average of 39.0 The approach to multi-method planning described so
decisions to produce plans containing on average 3.3 far starts with a restricted method and switches to a
operators. less restricted method whenever the current method

This trade-off between completeness and efficiency fails. This switch is always made on a problem-by-
implies that the planning system would be best served problem basis. However, this is not the only granular-
if it could always opt for the most restricted method ity at which methods could be switched. The family
adequate for its current situation. In a first step of multi-method planning systems can be viewed on a
towards this ideal, we have begun exploring multi- granularity spectrum. While in coarse-grained multi-
method planners that start by trying highly restricted method planners, methods are switched for a whole
methods, and then successively relax the restrictions problem when no solution can be found for the prob-
until a method is found that is sufficient for the prob- lem within the current method, in fine-grained multi-
lem. The intuition behind this is based on iterative method planners, methods can be switched at any
deepening (Korf, 1985) - if the proportion of prob- point during a problem at which a new set of subgoals
lems solvable at a particular level of restriction is large is formulated, and the switch only occurs for that set 0
enough, and the ratio of costs for successive levels is of subgoals (and not for the entire problem). At this
large enough, there should be a net gain. Over the set finer level of granularity it is conceivable that the plan-
of 100 blocks-world problems, this has yielded broadly ner could use a highly-restricted and efficient method
applicable multi-method planners (actually, complete over much of a problem, but fall back on a nonlinear
for the blocks-world) that on average generate shorter method without protection for those critical subregions
plans than are produced by corresponding (complete) where there are tricky interactions.
single-method planners, with marginally lower plan- With this flexibility of method switching, fine-
ning times (from 39.9 to 52.5 decisions for single- grained multi-method planning can potentially out-
method planners versus from 33.4 to 42.2 decisions for perform both coarse-grained multi-method planning
multi-method planners). and single-method planning. Compared with coarse-

However these results do not necessarily mean that, grained multi-method planning, it can save the effort
for all situations, there exists a multi-method plan- of backtracking when the current method can not find
ner which outperforms the most efficient single-method a solution or the current partial plan violates the bi- S
planner. In fact, the performance of these planners de- ases used in the current method. Moreover, it can
pends on the biases used in the multi-method planners save the extra effort of using a less restricted method
and the problem set used in the experiments. For ex- on later parts of the problem, just because one early
ample, if the problems are so complex that most of part requires it. As compared with single-method plan-
the problems are solvable only by the least restricted ning, a fine-grained multi-method planner can utilize
method, the performance lost by trying inappropriate biases which would cause incompleteness in a single-
earlier methods in multi-method planners might be rel- method planner - such as directness or protection in
atively considerable. On the other hand, if the prob- the blocks-world domain - while still remaining com-
lems are so trivial that it takes only a few decisions for plete. The result is that a fine-grained multi-method
the least restricted method to solve the problems, the planner can potentially be more efficient than a single-
slight performance gain by using more restricted meth- method planner that has the same coverage of solvable
ods in multi-method planners might be overridden by problems.
the complexity of the meta-level processing required to One way to construct an efficient multi-method plan- S
coordinate the sequence of primitive planners. ner is to order the single method planners accord-

These results suggest that multi-method planning is ing to increasing coverage and decreasing efficiency,
a promising approach, but that further work is neces- an approach called monotonic multi-method planning.
sary to establish whether robust gains are possible over In this paper, we focus on a special type of mono-
a wide range of domains. The work reported here is tonic multi-method planner, called a strongly mono-

tonic multi-method planner, which is based on the de-
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Decisions _ Plan length
Planner A1  I A2 A5,II Al A

M1 (directness, protection) 12.50 - 1.56
M2 (linearity, protection) 13.00 18.90 1.56 2.32
AM3 (protection) 13.21 26.91 1.62 2.49
M4 (directness) 14.48 - 1.71 -

M5 (linearity) 14.81 24.47 24.84 2.10 3.22 3.34
M6  16.23 40.85 40.96 2.02 3.17 3.37

Table 1: The performance of the six single-method planners for the three problem sets defined by the scopes of the
planners.

liberate selection and relaxation of effective biases. In set {Mk,}, if for each pair of Mk. and Mk, in {Mk,}
the next section, we provide a formal definition of a such that Bk. = Bk, + {b}, s(Mk,, Ak,) < s(Mk,, Ak,)
monotonic multi-method planner, and define a crite- and l(Mk., Ak,) < l(Mk, Ak,), for every j < z. A
rion for selecting effective biases from experiments with multi-method planner which consists of Mk, Mk 2, ... ,
single-method planners. Mk, is called strongly monotonic if Bk._, D Bk,, for

2 < i < n, and BL,_1 - Bk, consists of positive biases

Selecting Effective Biases only, for 2 < i < n. From this definition, if a multi-
method planner is strongly monotonic, it is monotonic,

Let Mk,(ki E {f. 6) be a single- method planner, while the reverse is not necessarily true.
as defined in Section 1. A fine-grained multi-method To generate a strongly monotonic multi-method
planner that consists of a sequence of n different single- planner, it is necessary to determine which biases are
method planners is denoted as Mk1 .--k 2 ...... k,,, and the panr ti eesr odtriewihbae t
corredpondingrcoarse-grainedsmulti-method plannertis positive in the domain. Table 1 illustrates the aver-
corresponding coarse-grained multi-method planner is age number of decisions, s(Mk., Ak,), and average plan
penoted aset o bMs, and let.Mk.. L A be te su t o lengths, l(Mk,, Ak,) for the six single-method planners
pie set of problems, and let Ak, g A be the subset of and the problem sets defined by the scope of these plan-
tions arMe, Ao)vableM in rencipresentMk,. respect ners over a training set of 30 randomly generated 3-
tions s(Mk,, A,) and l(Mk,, A,) represent respectively and 4-conjunct problems in the blocks-world domain.
the average cost that Mk, requires to succeed and the In this domain, A4 is the same as A1 because if a prob-average length of plans generated by M,, for the prob- lem is not solvable with protection, it also is not solv-
lems in A, C Ak,. Let Mk, be a null planner which able with directness. As is the same as A6 because
cannot solve any problems; that is. Ak. = 0. both M5 and M6 are complete in this domain, though

A multi-method planner which consists of Mk,, Mk•, Ms may not be able to generate an optimal solution.
I Mk, is called monotonic if the following three A2 and A3 are different sets in principle, because prob-

conditions hold for each pair of Mk,_, and Mk, for lems such as Sussman's anomaly cannot be solved by
2 < i < n: (1) Ak,_, C Ak,, (2) s(Mk._.,Ak,_.,) _< a linear planner with protection (M 2 ) but can be by
s(Mk,,Ak,_,), for j < i, and (3) l(Mk,_ ,Ak,_i) < a nonlinear planner with protection (M 3 ). However,
l(Mk,,Ak,_,), for j _< i.3  The straightforward way among the 30 problems, these "anomaly" problems did
to build monotonic multi-method planners is to run not occur, yielding A2 = A 3 for this set of problems.
each of the individual methods on a set of training The results imply that directness and protection are
problems, and then from the resulting data to gener- positive in this domain, while linearity is not, since
ate all method sequences for which monotonicity holds. l(M 5 , A,) > l(M 6 , A,) and l(M 5 , A2 ) > l(M 6 , A 2 ). If
The approach we have taken here is to generate only we use linearity as an independent bias - so that one
a subset of this full set; in particular, we have focused set of multi-method planners is generated using it and
only on multi-method planners in which later methods one set without it -- and vary directness and protec-
embody subsets of the biases incorporated into earlier tion within the individual multi-method planners, we
methods, and in which the biases themselves are all get a set of 10 strongly monotonic multi-method plan-
positive. ners (four three-method planners and six two-method

Let Bk, be the set of biases used in Mk,. A bias planners).

b is called positive in a problem set A and a method
3 This is a slight redefinition of monotonicity from (Lee

& Rosenbloom, 1992) with a minor correction.
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_ Decisions Plan length

Planner jAl JA 2  A3  II " Ai A 2  IA 3  AAs

M5 22.21 129.41 29.48 29.22 3.00 3.78 3.83 3.82
M 6  33.40 47.12 48.06 47.93 2.90 3.88 4.07 4.14
Average 38.58 3.98 0
Mi-M 2 -M 5  13.26 24.69 25.07 26.13 1.82 2.48 2.54 2.58
M, M 3 -M 6  13.26 26.34 26.55 28.91 1.82 2.52 2.54 2.59

M 1-- M 4 -11 5  13.26 26.16 26.41 26.79 1.82 2.85 2.92 2.94

M,-M 4 -M 6  13.26 36.78 37.40 37.30 1.82 2.91 2.99 3.02
A l 5M5 13.26 25.68 25.86 26.04 1.82 2.96 3.02 3.03
M 1 iM6  13.26 31.54 31.85 31.77 1.82 2.89 2.94 2.97
I%- M 5  19.54 27.89 28.18 29.34 1.85 2.43 2.49 2.58

M 3 -M 6  21.22 28.46 28.41 30.67 2.00 2.52 2.52 2.57

M4 16.85 27.81 27.95 28.38 1.82 2.83 2.88 2.93

M4 -M 6  16.85 33.33 33.59 34.47 1.82 2.83 2.85 2.95
Average 29.98 2.82

MI-2-5 8.63 12.87 13.00 13.01 1.82 2.80 2.84 2.90
MI-3- 6  8.63 13.38 13.43 13.56 1.82 2.53 2.53 2.59

M--4-- 8.63 13.19 13.29 13.25 1.82 3.25 3.32 3.34
M--4-6 8.63 13.48 13.73 13.63 1.82 2.87 2.96 2.97

MI-5 8.63 12.21 12.36 12.51 1.82 2.63 2.73 2.81
Mi-6 8.63 13.22 13.27 13.23 1.82 2.68 2.69 2.73
M2-5 19.19 23.75 23.76 23.80 2.56 3.07 3.11 3.16
M3_6 16.62 23.45 23.56 24.22 2.03 2.56 2.57 2.71
M4-5 13.57 17.24 17.30 17.38 2.44 3.71 3.77 3.77
M4- 6  14.10 19.28 19.58 19.83 2.41 3.33 3.43 3.46
Average 11 16.44 3.04

Table 2: Single-method and coarse-grained multi-method vs. fine-grained multi-method planning in the blocks-
world domain.

Experimental Results (z=3.42, p<.01). They generate slightly longer plans
than coarse-grained multi-method planners; however,

Table 2 compares the strongly monotonic fine-grained no significance is found at a 5% level (z=1.77). These
multi-method planners with the corresponding coarse- results likely arise because, whenever possible, both
grained multi-method planners and (complete) single- types of multi-method planners use the more restrictive
method planners over a test set of 100 randomly gener- methods that yield shorter plan lengths, while there
ated 3- and 4-conjunct blocks-world problems (this test may be little difference between the methods that ul-
set is disjoint from the 30-problem training set used in timately succeed for the two types of multi-method
developing the multi-method planners). Z-tests on this planners.
data reveal that fine-grained multi-method planners Table 3 illustrates the performance of these three
take significantly less planning time than both single- types of planners over a test set of 100 randomly gener-
method planners (z=5.35, p<.O0) and coarse-grained ated 5-conjunct problems in the machine shop schedul-
multi-method planners (z=6.72, p<.01). This likely ing domain (Minton, 1988). In this domain, no pre-
stems from fine-grain multi-method planners prefer- condition subgoals are required because there is no
ring to search within the more efficient spaces defined operator which achieves any of the unmet precondi-
by the biases - thus tending to outperform single- tions. Thus both directness and linearity are irrelevant.
method planners - but being able to recover from However, there are strong interactions among the op-
bias failure without throwing away everything already erators, so protection violations are still relevant. In
done for a problem (thus tending to outperform coarse- consequence, the entire table of six planners reduces
grained multi-method planners). to only two distinct planners for this domain: with or

Fine-grained multi-method planners also generate without protection.
significantly shorter plans than single-method planners S
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Decisions 
Plan lengthPlanner IIA. 11 A, A._ A, A4

M 4,N 5,M6  31.47 33.97 4.13 4.d47
MI-M 4 , M 2-MS, M3-M 6  26.17 35.91 2.43 3.58
M1 - 4 , M2-5, M 3 - 6  18.71 19.07 2.87 3.29

Table 3: Single-method and coarse-grained multi-method vs. fir,-grained multi-method planning in the scheduling
domain.

Blocks-world domain Scheduling domain4.5 5.5

4.+. 5-

E 3.5 * *S4.5 +

= = 4I* 0

0 :. 3- 00 0 0 45 5 04•0 OD1 02.5 3.5-

115 20 25 30 35 40 453 a_ __5 2__0 n _ 00 __

Decisions Decisions

Figure 1: Performance of single-method planners (+), Figure 2: Performance of single-method planners (+),
coarse-grained multi-method planners (o), and fine- coarse-grained multi-method planners (o), and fine-
grained multi-method planners (*) in the blocks-world grained multi-method planners (*) in the scheduling
domain. domain.

As with the blocks-world domain, the z-tests in cept learning (Russell & Grosof, 1987; Utgoff, 1986).
the scheduling domain indicate that fine-grained plan- In the planning literature, this approach is closely re-
ners dominate both single-method planners (z=10.91, lated to an ordering modification which is a control
p<.Ol) and coarse-grained planners (z=8.95, p<.01) strategy to prefer exploring some plans before oth-
in tcrms of planning Lime. Fine-grained plaiiiMs ers (Gratch & DeJong, 1990). Bhatnagar & Mostow
also generate significantly shorter plans than do the (1990) described a relaxation mechanism for over-
single-method planners (z=6.49, p<.01). They gen- general censors in FAILSAFE-2. However, there are a
erate slightly shorter plans than coarse-grained multi- number of differences, such as the type of constraints
method planners; however, no significance is found at used, the granularity at which censors are relaxed, and
a 5% level (z=1.28). the way censors are relaxed. SteppingStone (Ruby &

Figures 1 and 2 plot the average number of decisions Kibler, 1991) trics constrained search first, and moves
versus the average plan lengths for the data in Tables 2 on to unconstrained search, if the constrained search
and 3. These figures graphically illustrate how the reaches an impasse (within the boundary of ordered
coarse-grained approach primarily reduces plan length subgoals) and the knowledge stored in memory cannot
in comparison to the single-method approach, and how resolve the impasse.
the fine-grained approach primarily improves efficiency This approach is also related to the traditional
in comparison to the coarse-grained approach. partial-order planning, where heuristics are used to

guide the search over the space of partially or-
Related Work dered plans without violating planner completeness

(McAllester & Rosenblitt, 1991; Barrett & Weld, 1993;
The basic approach of bias relaxation in multi-method Chapman, 1987). For example, using directness in fine-
planning is similar to the shift of bias for inductive con- grained multi-method planners is similar to preferring
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the nodes which reduce the size of the set of open Gratch, J. M., & DeJong. G. F. (1990). A framework
conditions when a new step is added. Relaxing bias for evaluating search control strategies. Proceedings of
in fine-grained multi-method planners only when it is the Workshop on Innovative Approaches to Planning,
necessary is similar to the least-commitment approach Scheduling, and Control (pp. 337-347). San Diego,
which adds ordering constraints only if a threat to a CA: Morgan Kaufmann.
causal link is detected. Korf, R. E. (1985). Depth-first iterative-deepening:

An optimal admissible tree search. Artificial Intelli-
Conclusion gence, 27, 97-109.

In this paper, we have provided a way to select a set Laird, J. E., Newell, A., & Rosenbloom, P. S. (1987).
of positive biases for multi-method planning and inves- Soar: An architecture for general intelligence. Artifi-
tigated the effect of refining the granularity at which cial Intelligence, 33, 1-64.
individual planning methods could be switched. The Lee, S.. & Rosenbloom, P. S. (1992). Creating and
experimental results obtained so far in the blocks-world coordinating multiple planning methods. Proceedings
and machine-shop-scheduling domains imply that (1) of the Second Pacific Rim International Conference on
fine-grained multi-method planners can be significantly Artificial Intelligence (pp. 89-95).
more efficient than single-method planners in terms of McAllester, D., & Rosenblitt, D. (1991) Systematic
planning time and plan length, and (2) fine-grained Non in er P . Pros en gs of the Nin t ematio
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